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Liquid-solid phase change problems in convection heat transfer have many engineering 
applications. The Navier-Stokes and energy equations have been solved for transient 
laminar two-dimensional flow past a horizontal subcooled cylinder with outward solidi- 
fication. The irregular, moving solid-liquid regions have been transformed into uniform 
squares for easier numerical problem solution using an ADI finite difference scheme. Results 
discussed are the unsteady thermal flow patterns, solid-liquid interface locations, Nusselt 
number distributions, and rates of ice formation for different Reynolds numbers, superheat 
parameters and Stefan numbers. After the initial phase of conduction-controlled ice layer 
growth, forced convection heat transfer may strongly affect the freezing process, potentially 
causing irregular shapes of ice formation. 
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I n t r oduc t i on  

Liquid-solid phase change problems with moving boundaries 
have numerous applications. Examples include: ice cover 
formation, metal casting, crystal growing, frost layer formation, 
food stuff freezing, heat shield ablation, ice melting, latent heat 
storage, and soil freezing or thawing. One common characteristic 
of these Stefan-like problems is that phase change and an 
associated source or sink of latent heat occurs at the (unknown) 
moving interface. Furthermore, conductive heat fluxes governed 
by the Stefan number (i.e., ratio of sensible heat to latent heat), 
and the property value ratios of the phase change material are 
important in all of these processes. However, subcooling of the 
solid, possible density abnormalities of the liquid, and natural 
convection may be dominant in melting processes 1'2 whereas 
outward solidification in a liquid stream past a cooled wall 
may be more determined by mechanisms of forced convection 
heat transfer and/or by the characteristics of the superheated 
fluid. 3'4 Hirata et al. 3 measured steady-state ice layer profiles 
on an isothermal horizontal plate in a free stream and extended 
the analysis theoretically using a modified Reynolds number 
as the correlation parameter. Lock and Kaiser 4 studied ice 
formation on single vertical tubes and the generation of an ice 
vail around twin tubes in a river. Their theoretical analysis, 
assuming steady growth of concentric ice layers, was supported 
by experiments in a water tunnel with single and twin cylinders. 
In related studies, Karniadakis 5 used a commercial code based 
on the spectral element method to solve the unsteady Navier- 
Stokes and energy equations for laminar two-dimensional flow 
past a heated cylinder. The emphasis was on the structure of 
the near wake for Reynolds numbers up to 200 and the Nusselt 
number distributions for different thermal boundary conditions. 
Lunardini ~ analyzed freezing and thawing of concentric regions 
around a cylinder assuming transient thermal diffusion only. 

Address reprint requests to Dr. Kleinstreuer at the Department 
of Mechanical and Aeroopace Engineering, North Carolina State 
University, Raleigh, NC 27695-7910, USA. 
Received 5 July 1988; accepted 28 March 1989 

© 1989 Butterworth Publishers 

Based on a rather simple numerical solution employing the 
heat balance integral method, phase change locations and 
surface heat transfer rates are discussed for different system 
parameters. Solomon et al. 7 replaced the transient conduction 
heat transfer equation for the Stefan problem with the teleg- 
rapher's equation. They argued that Fourier's law should be 
more realistically replaced by ~(~, t + ~ ) = - k V T ,  where ¢ is 
called the response or relaxation time of the phase change 
material. Additional references are given in subsequent sections. 

Concentrating on the freezing process of water at low Stefan 
numbers around a cylinder in cross flow, the complete transport 
equations for laminar two-dimensional flow are transformed 
and solved numerically using an ADI finite difference scheme, s 
It is of interest to analyze forced convection heat transfer along 
the moving interface and to compute the growth rate of 
solidifying material for different system parameters. Because of 
the lack of experimental data sets for the complete system, our 
predictive results from special case studies are compared with 
measurements of single-phase as well as two-phase conduction 
dominated and convection controlled heat transfer processes. 

Analysis 

Consider a cylinder of diameter D in uniform cross flow of 
a phase-change material with temperature To. The cylinder 
temperature is suddenly lowered below the fusion temperature 
of the liquid, i.e., Tw < T I = 0°C, and a solid layer is formed 
around the cylinder, changing the immediate velocity field. 
While the cylinder surface remains at the constant temperature 
Tw, the local velocity field and temperature distributions in 
the solid and liquid are changing with time t, coupled via 
the unknown interface location R = R ( O , t )  which stays at 
T= T I. Figure 1 depicts the problem of interest and the 
coordinate system used. Assuming two-dimensional laminar 
flow of Newtonian fluids with constant properties, the differences 
in volume associated with phase change are neglected as well 
as cylinder end effects, natural convection, and vortex shedding. 

Employing the stream-function/vorticity approach, the tran- 
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Schematics for outward solidification around a subcooled 

as r ~ oo (potential flow) 

sient Navier-Stokes equations for two-dimensional flow in 
polar coordinates are written as 

and 

~ q ; =  - -~  (2) 
where 

"~2_ 02 1 0 1 02 
d ~ -  r~, =fi, (3a-d) ao v - ~ r 2 + r  ~ r + ~  ~-~ and 

1 . Off 

The associated boundary conditions are for t > 0: 

~b=ff=0 at 0=0 and n (symmetry) (4a) 

i f=de '=0 for r=R(O,t) (no slip) (4b,c) 
ar 

and 
=-rUsinO and &=0 

(4d,e) 

The temperature field in the liquid phase is described by the 
transient convection-conduction equation. 

d 0 0 2 o_,+, r, , ,) 

Att<to,  7"= ~o and for t > to, ~=~zatr=R(O,t) (6a,h) 

As r ~ ,  ~=~oandOT"=OatO=Oandn (6c,d) 
00 

Equation 5 can be reduced for the solid region to 

07 

subject to 

~=  7"f at r=R(O, t) and 7"= ~ for r=a (8a,b) 

Symmetry requires that 

- - = 0  at 0=0 and n (8c) 
00 

A heat balance at the solid-liquid interface R(O, t) yields 

dR 
P'L&=[l+(~SRI21(kdt-ki~r)00,] JI  t " dr (9) 

In order to facilitate the numerical work, the irregular 
solidification front in the physical domain is transformed to a 
rectangular shape in the computational domain using body- 
fitted coordinates. Considering first the liquid region, a fine grid 
is required near the interface with a smooth transition to a 
coarse grid for the outer region. Hence an exponential function 
for the r-coordinate is postulated, viz. 

r 
= -  = S(T, r/)e ~¢ (I0) 

a 

N o t a t i o n  

a Radius of cylinder 
c Specific heat 
D Diameter of cylinder 
Fo Fourier number, =t/a 2 
O Transformed coefficient 
h Heat transfer coefficient 
k Thermal conductivity 
L Latent heat 
Nu Nusselt number, hD/k 
NUe Effective Nusselt number, h(~D)/k 
Pr Prandtl number, v/= 
q Surface heat transfer rate 
r Radial coordinate 

Dimensionless radial coordinate, r/a 
R Phase change location 
Re Reynolds number, UD/v 
Ree Effective Reynolds number, U(~D)/v 
Rth Thermal resistance 
S Dimensionless phase change location, R/a 
S Average dimensionless phase change location 
Ste Stefan number, co(T I -  T.)/L 
t Time 

Temperature 
T Dimensionless temperature, (7"-- 7"w)/(7"y-- 7"w) 
fi, ~ Velocity components in 0- and r-direction 
U Velocity at infinity 

V/V o Ratio of ice deposition volume to cylinder volume, 
f 2 _ l  

Greek symbols 

V 

T 

CO 

Thermal diffusivity 
Transformed r-coordinate (solid region) 
Transformed 0-coordinate 
Angular coordinate 
Parameter for fluid superheat or subcooled cylinder, 

Kinematic viscosity 
Transformed r-coordinate (liquid region) 
Dimensionless time, Ut/a 
Stream function 
Dimensionless stream function, ~/Ua 
Vorticity 
Dimensionless vorticity, Oa/U 

Subscripts 
av Average value 
f Frozen state, fusion 
l Liquid material 
max Maximum value 
0 Initial condition or outer boundary 
s Solid material 
s.p, Stagnation point 
sep Flow separation 
w Cylinder wall 
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and 

0=m/ (11) 

where 

S(z,q)=R/a and x=Ut/a (12a,b) 

are the dimensionless interface location and the convective time, 
respectively. 

Nondimensionalization of Equations 1, 2, and 5 yields 

--720=103 

and 

1  soT)+(+oT +0+') 2 
\0z  + S 0 z ~ ]  \O-~Or/ aq~- =RePr  

where 

(13) 

(14) 

(15) 

2 ( 0S 0 2 2 0 2 
~.2p2 S-- 1 0/7 0~ 07~ ~2~2 0g]2 

,(SI l i [ l+ ~ ( 2 (0S~ + 02s~l~  
+ i - (21) 

The nondimensional energy balance for the liquid-solid 
interface becomes 

0S =Ste[1 + ( 1  aS]2](1 OT k_tlOT) (22) 
aFo ~ O q ]  JkS- 1 0~ ks~S O~] 
Defining an effective Nusselt number as 

h+D 
Nu+- (23a) 

k 

which reflects heat transfer at the moving boundary location, 
the local heat transfer coefficient can now be computed from 

2 OT/O~ 
Nu~- (23b) 

2 

g(S, ~) = It2S2e i'¢ 

and 

Oq] J O~' ~rS \OqJ O~ Oq 

a 2 I ( I {OSV a2s~a 

The boundary conditions 4 and 6 become 

0=0~=0 and -ve0],=R=co f o r r = R  
0g 

co =0 and 0 = 2 cosh0r~) sin(m/) at infinity 

~>Zo: 0=~o=0 on q=O, 1 

and 

T=% 
T = I  for ~=0 

T = To at infinity 

0T 
- - = 0  on q=0, 1 
0t/ 

(16a) 

(16b) 

(17) 

(18) 

For the solid region, the transformations reported by Ha and 
Chen 2 have been used 

P-1  
= and 0 = ~q (19a,b) 

S(Fo, P/)- 1 

While S(Fo, ~/) stays the same, a new (diffusive) time for the 
solid region, the Fourier number, is introduced 

~t 2 [~,~ 
Fo=~,=R--~r  k ; ) z  (19c) 

Equation 7 now reads 

~T ~ 0S 0T -V2T (20) 
0Fo S - 1 0 F o  0( 

where 

v 2 F/ 1 V 1 f ~ V / o s V - l o  2 

N u m e r i c a l  s o l u t i o n  m e t h o d  

Using the previously described coordinate transformations, the 
solid region is mapped onto a 1 x 1 square domain which is 
discretized using a 51 x 21 grid where At/= 1/50 and A~ = 1/20. 
The liquid region, bounded by a radius of ~ = 1 which corre- 
sponds to about 23 times of the cylinder radius, also forms a 
square domain with A~/=l/50 and A~=l/40 or A~=l/30 
depending upon the Reynolds number. An alternate direction 
implicit finite difference code has been developed to solve 
Equations 13-15, 20, and 22 subject to the boundary conditions 
17 and 18. An upwind difference scheme is applied for the 
convective terms in Equation 15. In general, central differencing 
is used for the spatial derivatives whereas time derivatives are 
approximated by a forward difference operator. As an initial 
condition, a thin ice layer on the cylinder surface is assumed 
to get the numerical computation started. The thickness of this 
initial layer depends on the Stefan number and the superheat 
of the fluid. Prusa and Yao 1 pointed out that the effect of the 
incorrect initial interface decays very rapidly. It was found that 
setting S = 1.05 initially resulted in stable and accurate numerical 
solutions. The location of the moving boundary is calculated 
from the temperature distributions of the liquid and solid 
regions at the end of each time step. Using small time steps 
(Az < 0.05), the discontinuity caused by the moving solidification 
front is negligible for low Stefan number problems; hence 
intermediate iterations are not necessary. Results from repeat 
calculations with finer grids indicated that mesh-independence 
has been achieved. 

R e s u l t s  a n d  d i s c u s s i o n  

The predictive capabilities of the new model have been tested 
by comparing numerical results with experimental data sets 
from releated case studies. Then, the validated computer 
simulation model has been used to analyze flow patterns, 
isotherms, and ice layer formations for different system 
parameters. 

Comparison w i th  pub l ished data 

In Table 1, characteristic parameters for single-phase, thermal 
flow past a horizontal cylinder have been summarized. The 
comparison between predicted and measured data is very good 
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Table  I Data comparison for single-phase thermal cross f low past a cylinder (0 w is measured counterclockwise) 

Separation angle Drag coefficient Nusselt numbers (Pr--1.0) 
0 m C~ Nu~p Nu,, 

Re d Model [Ref. 10] Model [Ref. 11] Model [Ref, 9] Model ERe[ 12] 

10 30 ° 32 ° 2.92 2.85 . . . .  
20 . . . .  12.5 12.9 7.1 6.5 
40 54.6 ° 54.5 ° 1.52 1.52 . . . .  
50 . . . .  16.4 17.1 10.7 10.3 
70 62.5 ° 62.5 ° 1.22 1.21 . . . .  

100 67.7 ° 67.7 ° 1.08 1.06 22.2 24.2 14.5 14.5 

except for higher Reynolds numbers (Re > 100) when vortex 
shedding may influence 0,=p, Co, and Nu-values. 

Conduction-dominated ice formation around circular 
cylinders (Re = 0) has been analyzed by Lunardini. ~ Figure 2 
shows a comparison of the transient interface location for 
freezing water between Lunardini's results and our model 
predictions. 

Flow patterns and isotherms 

Ice layer growth as well as the temporal development of 
streamlines and isotherms are shown in a sequence of graphs 
(Figures 3(a)-(c)) for typical values of the key parameters. The 
results confirm the assumption of concentric ice layer growth 
in the beginning stage. While the free stream velocity stays 
constant, the local Reynolds number increases as the solid- 
liquid interface moves outwards with time, 1 <Fo  <7. Thus, 
the recirculation zone expands which in turn affects the overall 
heat transfer process. The isotherms are quite evenly spaced 
along the front part of the cylinder, 0 ° < 0 <  50 °, and near the 
rear stagnation point, i.e., 160°< 0 < 180 °. As a result, the local 
heat transfer coefficient and, in turn, the ice layer thickness 
should be rather uniform within these two angular sections (cf. 
Figures 4(b) and 5). 

Ice layer format ion 

Conduction heat transfer in the solid region plays an important 
role during the freezing process. Because of the very steep 
temperature gradients across the initially thin ice layer, large 

. . . .  I . . . .  i 

J ~  

g 
8 

o c~ ~ "  Ste=O.1 ~,=1.0 

n-c'~ / ~ e r d ~ n W ~ ; k s 0 )  

, , , , I , i = , I r , , , 
0.1 0.2 0.3 

Ste*Fo 

Figure 2 Data comparison oftransient solid-liquid interface location 
for conduction controlled process 

amounts of heat are withdrawn from the adjacent liquid. Figure 
4(a) shows the transient interfacial heat flux ratio for different 
Reynolds numbers, where 

q; kJkl ~ 
- 1 4  - -  ( 2 4 )  

q~' 2 Nue Ste aFo 

A-I: 3.0, 2.0, 1.5, 1.0, 0.7, 
0.3, 0.1, 0.0, -0.05 

J-Q: 1.136, 1.236, 1.486, 1.516, 
1.526, 1.531, 1.534, 1.535 

A-I: 3.0, 2.0, 1.5, 1.0, 0.7, 
0.3, 0.1, 0.0, -0.05 

J-q: 1.136, 1.236, 1.486, 1.516, 
1.526, 1.531, 1.534, 1.535 

A-Z: 3.0, 2.0, 1.5, 1.0, 0.7, 
0.3, 0.1, 0.0, -0.05 

J-q: 1.136, 1.236, 1.486, 1.515, 
1.526, 1.531, 1.534, 1.535 

Figure 3 Streamlines, isotherms and ice formation around cylinder 
at three time levels Fo = 1, 3 and 7 (Re = 50, Pr = 13, Ste = 0 .03616 
and 2=0.5395) 
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Figure 4(a) Transient heat flux ratio at the solid-liquid interface 
for different free-stream Reynolds numbers (Ste = 0.3615, A = 0.5395) 
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Figure 4(b) Shape and growth of ice layer around cylinder for 
three Reynolds numbers R e = 2 0 ,  50 and 100 (Sta=O.03615,  

= 0.5395 and Pr = 13.0) 
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Figure 4(c) Transient eccentricity parameter for different free- 
stream Reynolds numbers (Ste=0.03615, ~.=0.5395) 
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Figure 5 Local Nusselt number distribution at three time levels 
F o =  1, 3 and 7 for R e = 2 0 ,  50 and 100 (S te=0 .03615 ,  ,~=0.5395 
and Pr=  13.0) 
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Figure 6 Average Nusselt number profiles as a function of Stefan 
number and Fourier number for different free-stream Reynolds 
numbers and superheat parameters 

In the early stages, the concentric ice build-up is almost entirely 
controlled by the thermal diffusion and latent heat balance. 
After some time (i.e., Ste Fo > 0.1), when the thermal resistance 
of the growing ice layer, Rth,-,In(R/a),  increases, the influence 
of variations in convection heat transfer becomes significant 
(i.e., F o > I )  and the ice layer thickness varies with location 
and Reynolds number (Figure 4(b)). Such a dependence of 
S = S(0, Re) is even more dramatic when the fluid is superheated 
or the cylinder is subeoolcd, i.e., when X increases. Figure 4(c) 
indicates the increase of "eccentricity" in ice formation around 
a cylinder with dimensionless time. Here, S,.,x is the maximum 
dimensionless interface location (of. Figure 4(b)) and $,v = ~" is 
the average dimensionless radius for the cylinder plus ice layer 
configuration. 

The temporal changes of the local Nussclt number (cf 
Equation 23b) for different free stream Reynolds numbers are 
shown in Figure 5. Tbe graphs Nu,(0) reflect the isotherm 
patterns along the cylinder wall as discussed in conjunction 
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Relative solidification volume as a function of Reynolds 
n u m b e r  fo r  d i f fe ren t  S te fan  numbe rs  and  Four ier  numbe rs  

with Figure 3. After flow separation, the heat transfer coefficient 
has a minimum because the recirculating fluid attains radially 
a rather uniform temperature; as a result, Nue ~ OT/O~ is small. 

Figure 6 depicts the average Nusselt number at the interface 
as a function of dimensionless time, Ste .Fo,  for different 
Reynolds numbers and for two superheat values. For  a given 
Stefan number, it is evident that the amount of heat transferred 
and hence the effective Nusselt number is initially large and 
then levels off swiftly, especially at low Reynolds numbers. 

Figure 7 indicates that decreasing the Stefan number, i.e., 
maintaining higher cylinder wail temperatures will retard the 
solidification rate. Ice production is almost independent of the 
Reynolds number at low Fourier numbers (Fo < 1.0), when 
the phase change process is heat conduction controlled, i.e., 
Ste. Fo << 1. 

C o n c l u s i o n s  

The unsteady Navier-Stokes equation in the stream function- 
vorticity formulation and the energy equation have been solved 
for laminar two-dimensional flow past a subcooled cylinder 
with outward solidification. Suitable coordinate transformations 
allowed mapping of the irregular, moving solid-liqnid regions 

into uniform squares for easier numerical solution using an 
ADI finite difference scheme. The validated computer simulation 
model has been used to study transient thermal flow patterns, 
interface locations, Nusselt number distributions and rates 
of ice formation for different Reynolds numbers, superheat 
parameters and Stefan numbers. 

Forced convection heat transfer may have a strong effect on 
the freezing process. Although initially heat conduction con- 
trolled, the rate of ice layer growth is retarded at high Reynolds 
numbers flows. At low Stefan numbers or high superheat 
parameters, the shape of ice formation can be very irregular, 
invalidating the commonly employed assumption of uniform 
ice layer growth. 
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